Algebraic Aspects of Multiple Regression

James H. Steiger

Department of Psychology and Human Development Vanderbilt University

James H. Steiger (Vanderbilt University)

Algebraic Aspects of Multiple Regression

Algebraic Aspects of Multiple Regression

Introduction

- Multiple Regression of Fuel Data
 - ANOVA for Model Comparison
 - Partial F-Tests: A General Approach
 - Testing Significance of a Single Term
 - Automatic Sequential Testing of Terms
- Standard Errors for Coefficients
- 4 Standard Errors for Predicted and Fitted Values

Introduction

• In this module, we quickly review some fundamental aspects of the algebra of multiple regression.

э

(日)、(四)、(日)、(日)

Key Matrix Formulas

- We already saw in our treatment of the two-sample independent sample *t*-test how additional regressors can be tested for significance using the partial *F*-test for nested models, implemented in the R command anova.
- Now we present the formulas for the model, estimated coefficients, and standard errors.

Key Matrix Formulas

The Model and its Coefficients

• The multiple regression model can be written

$$E(Y|\mathbf{X}) = \mathbf{X}\boldsymbol{\beta} \tag{1}$$

$$Var(Y|\mathbf{X}) = \sigma^2 \tag{2}$$

- As in the simple regression model, the first column of X is a column of 1's, and the first element of β is typically labeled β₀, with subsequent elements labeled β₁...β_p.
- Given a set of *n* criterion ("response") scores in **y** and an $n \times p + 1$ set of predictor scores (including the intercept) in the matrix **X**, the ordinary least squares estimates of β may be calculated as

$$\hat{oldsymbol{eta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
 (3

• The predicted scores are calculated as

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{P}_{\times}\mathbf{y}$$
(4)

The residual scores are, of course,

$$\hat{\mathbf{e}} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{P}_x)\mathbf{y} = \mathbf{Q}_x\mathbf{y} \tag{5}$$

James H. Steiger (Vanderbilt University)

Algebraic Aspects of Multiple Regression

Introduction

- Suppose we use *Dlic*, *Income*, *logMiles*, and *Tax* to predict *Fuel*.
- We begin by analyzing the scatterplot matrix.
- As we can see in the next slide, the potential predictors are only moderatey related to *Fuel*.

Scatterplot Matrix Code

- > data(fuel2001)
- > fuel2001\$Dlic <- 1000*fuel2001\$Drivers/fuel2001\$Pop</pre>
- > fuel2001\$Fuel <- 1000*fuel2001\$FuelC/fuel2001\$Pop</pre>
- > fuel2001\$Income <- fuel2001\$Income/1000</pre>
- > fuel2001\$logMiles <- logb(fuel2001\$Miles,2)</pre>
- > f <- fuel2001[,c(7,9,3,10,9)]</pre>
- > pairs(f,gap=0.4,cex.labels=1.5)

イロト 不得下 イヨト イヨト

Multiple Regression of Fuel Data Scatterplot Matrix

э

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

Correlation Matrix

What we see in the scatterplot matrix is reflected in the matrix of intercorrelations.

```
> round(cor(f),4)
```

	Tax	Dlic	Income	logMiles	Fuel
Tax	1.0000	-0.0858	-0.0107	-0.0437	-0.2594
Dlic	-0.0858	1.0000	-0.1760	0.0306	0.4685
Income	-0.0107	-0.1760	1.0000	-0.2959	-0.4644
logMiles	-0.0437	0.0306	-0.2959	1.0000	0.4220
Fuel	-0.2594	0.4685	-0.4644	0.4220	1.0000

(日)、(四)、(日)、(日)

Multiple Regression Output

- The next slide shows the output from the multiple regression for predicting *Fuel* from the 4 predictors.
- The far right column is the two-sided *p*-value for the *t*-statistic for each coefficient of a model term.
- In specifying the model, I use the specialized language used by R for setting up linear models. Each included term is assumed to have a coefficient, and the 1 explicitly indicates the intercept. R assumes an intercept is present. If you wish to specify a model with no intercept, you must include a -1 term.

イロト イポト イヨト イヨト

Multiple Regression Output

```
> attach(fuel2001)
> fuel.fit.all <- lm(Fuel~1 + Tax + Dlic + Income + logMiles)
> summary(fuel.fit.all)
```

Call:

```
lm(formula = Fuel ~ 1 + Tax + Dlic + Income + logMiles)
```

Residuals:

Min	1Q	Median	3Q	Max
-163.145	-33.039	5.895	31.989	183.499

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	154.1928	194.9062	0.791	0.432938	
Tax	-4.2280	2.0301	-2.083	0.042873	*
Dlic	0.4719	0.1285	3.672	0.000626	***
Income	-6.1353	2.1936	-2.797	0.007508	**
logMiles	18.5453	6.4722	2.865	0.006259	**

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 64.89 on 46 degrees of freedom Multiple R-squared: 0.5105, Adjusted R-squared: 0.4679 F-statistic: 11.99 on 4 and 46 DF, p-value: 9.331e-07

James H. Steiger (Vanderbilt University)

3

イロト イポト イヨト イヨト

ANOVA for Model Comparison

- ANOVA is a key tool for comparing models.
- Define p' to be the number of terms in the regression model, including the intercept.
- As before, SYY is the sum of squared Y deviation scores, and RSS is the sum of squared residuals. Then

$$SSreg = SSY - RSS \tag{6}$$

• To assess the overall significance of the prediction equation with 4 predictors, we follow the table shown below.

Source	df	SS	MS	F	<i>p</i> -value
Regression	p	SSreg	MSreg = SSreg/p	$MSreg/\hat{\sigma}^2$	
Residual	n-p'	RSS	$\hat{\sigma}^2 = RSS/(n-p')$		
Total	n-1	SYY			

Multiple Regression of Fuel Data ANOVA for Model Comparison

The overall test for the *combined* significance of β₁, β₂, β₃, and β₄ compares a model with only an intercept β₀ against a model with the intercept and all other terms.

```
> fuel.fit.intercept.only <- lm(Fuel~1)</pre>
> anova(fuel.fit.intercept.only,fuel.fit.all)
Analysis of Variance Table
Model 1: Fuel ~ 1
Model 2: Fuel ~ 1 + Tax + Dlic + Income + logMiles
           RSS Df Sum of Sq
                                      Pr(>F)
  Res.Df
                                  F
      50 395694
2
     46 193700 4
                     201994 11 992 9 331e-07 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

イロト イポト イヨト イヨト

Partial F-Tests: A General Approach

- Actually, the *F*-tests we've been discussing so far are a special case of a general procedure for generating *partial F-tests* on a nested sequence of models.
- Suppose Model A includes Model B as a special case. That is, Model B is a special case of Model A where some terms have coefficients of zero. Then Model B is nested within Model A.
- If we define SS_a to be the sum of squared residuals for Model A, SS_b the sum of squared residuals for Model B, df_a to be $n p_a$, where p_a is the number of terms in Model A including the intercept, and $df_b = n p_b$, then to compare Model B against Model A, we compute the partial F-statistic as follows.

$$F_{df_b - df_a, df_a} = \frac{MS_{comparison}}{MS_{res}} = \frac{(SS_b - SS_a)/(p_a - p_b)}{SS_a/df_a}$$
(7)

イロト 不得下 イヨト イヨト

Testing Significance of a Single Term

- R does this model comparison for us using the anova function.
- Suppose we wish to test the significance of the Tax term when all the other 3 predictors are already in the model (along with the intercept).
- There are several ways we can do this in R.
- A direct way is to specify a second model without the *Tax* term and compare it to the model with the *Tax* term.

```
> Fuel.Fit.Without.Tax <- lm(Fuel ~ 1 + Dlic + Income + logMiles)
> Fuel.Fit.With.Tax <- lm(Fuel ~ 1 + Dlic + Income + logMiles + Tax)
> anova(Fuel.Fit.Without.Tax,Fuel.Fit.With.Tax)
```

```
Analysis of Variance Table
```

```
Model 1: Fuel ~ 1 + Dlic + Income + logMiles

Model 2: Fuel ~ 1 + Dlic + Income + logMiles + Tax

Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 211964

2 46 193700 1 18264 4.3373 0.04287 *

----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Automatic Sequential Testing of Single Terms

- R will automatically perform a sequence of term-by-term tests on the terms in your model, in the order they are listed in the model specification.
- Just use the anova command on the single full model.
- You can prove for yourself (C.P.!) that the order of testing matters. The significance level for a term depends on the terms entered before it.

```
> anova(Fuel.Fit.With.Tax)
```

```
Analysis of Variance Table
```

```
Response: Fuel
          Df Sum Sq Mean Sq F value
                                       Pr(>F)
Dlic
           1 86854
                     86854 20,6262 4,019e-05 ***
                      59576 14.1481 0.0004765 ***
Income
           1
             59576
logMiles
          1 37300
                      37300
                            8.8581 0.0046399 **
Tax
              18264
                      18264
                             4.3373 0.0428733 *
Residuals 46 193700
                      4211
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A D > A B > A B > A B

Standard Errors for Coefficients

• In a formula that is virtually identical in form to the simpler one for bivariate regression, the covariance matrix of the estimated regression coefficients is given by

$$\operatorname{Var}(\hat{eta}|\mathbf{X}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$$
 (8)

• The unbiased estimate of σ^2 is

$$\hat{\sigma^2} = \frac{\text{RSS}}{n-p'} = \frac{\text{RSS}}{n-(p+1)} \tag{9}$$

• Consequently, the typical estimate for ${\sf Var}(\hat{eta}|X)$ is

$$\widehat{\mathsf{Var}}(\hat{\boldsymbol{\beta}}|\boldsymbol{X}) = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$
(10)

17 / 20

Standard Errors for Predicted and Fitted Values

- You recall from our earlier discussion that there are two distinctly different standard errors that we can compute in connection with the regression line.
- One standard error, sepred, deals with the situation where we have a new set of x values, and we wish to compute the standard error for the value of \hat{y} computed from these values.
- Another standard error, sefit, deals with the situation where we would like to compute a set of standard errors for the (population) fitted values on the regression line.

Standard Errors for Predicted and Fitted Values

Key Formulas

- Suppose we have observed, or will in the future observe, a new case with its own set of predictors that result in a vector of terms **x**^{*}.
- We would like to predict the value of the response given \mathbf{x}^* .
- As in simple regression, the point prediction is ỹ^{*} = x^{*}'β̂, and the standard error of prediction, sepred(ỹ^{*}|x^{*}), is

sepred
$$(\tilde{y}^*|\mathbf{x}^*) = \hat{\sigma}\sqrt{1 + \mathbf{x}^{*\prime}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}^*}$$
 (11)

• Similarly, the estimated average of all possible units with a value \mathbf{x} for the terms is given by the estimated mean function at \mathbf{x} , $\hat{E}(Y|\mathbf{X} = \mathbf{x}) = \hat{y} = \mathbf{x}'\hat{\beta}$, with standard error given by

sefit
$$(\hat{y}|\mathbf{x}) = \hat{\sigma} \sqrt{\mathbf{x}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}}$$
 (12)

Standard Errors for Predicted and Fitted Values

Key Formulas

- A given software package may not produce all these estimates.
- If a program produces sefit but not sepred, the latter can be computed from the former from the result

$$\operatorname{sepred}(ilde{y}^*|\mathbf{x}^*) = \sqrt{\hat{\sigma}^2 + \operatorname{sefit}(ilde{y}^*|\mathbf{x}^*)^2}$$
 (13)