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Introduction

Introduction

In this module, we quickly review some fundamental aspects of the algebra of multiple
regression.
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Introduction

Key Matrix Formulas

We already saw in our treatment of the two-sample independent sample t-test how
additional regressors can be tested for signficance using the partial F -test for nested
models, implemented in the R command anova.
Now we present the formulas for the model, estimated coefficients, and standard errors.
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Introduction

Key Matrix Formulas
The Model and its Coefficients

The multiple regression model can be written

E (Y |X) = Xβ (1)

Var(Y |X) = σ2 (2)

As in the simple regression model, the first column of X is a column of 1’s, and the first
element of β is typically labeled β0, with subsequent elements labeled β1 . . . βp.
Given a set of n criterion (“response”) scores in y and an n× p + 1 set of predictor scores
(including the intercept) in the matrix X, the ordinary least squares estimates of β may
be calculated as

β̂ = (X′X)−1X′y (3)

The predicted scores are calculated as

ŷ = Xβ̂ = X(X′X)−1X′y = Pxy (4)

The residual scores are, of course,

ê = y − ŷ = (I− Px)y = Qxy (5)
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Multiple Regression of Fuel Data

Multiple Regression of Fuel Data
Introduction

Suppose we use Dlic , Income, logMiles, and Tax to predict Fuel .
We begin by analyzing the scatterplot matrix.
As we can see in the next slide, the potential predictors are only moderatey related to
Fuel .
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Multiple Regression of Fuel Data

Multiple Regression of Fuel Data
Scatterplot Matrix Code

> data(fuel2001)

> fuel2001$Dlic <- 1000*fuel2001$Drivers/fuel2001$Pop

> fuel2001$Fuel <- 1000*fuel2001$FuelC/fuel2001$Pop

> fuel2001$Income <- fuel2001$Income/1000

> fuel2001$logMiles <- logb(fuel2001$Miles,2)

> f <- fuel2001[,c(7,9,3,10,9)]

> pairs(f,gap=0.4,cex.labels=1.5)
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Multiple Regression of Fuel Data

Multiple Regression of Fuel Data
Scatterplot Matrix
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Multiple Regression of Fuel Data

Multiple Regression of Fuel Data
Correlation Matrix

What we see in the scatterplot matrix is reflected in the matrix of intercorrelations.

> round(cor(f),4)

Tax Dlic Income logMiles Fuel

Tax 1.0000 -0.0858 -0.0107 -0.0437 -0.2594

Dlic -0.0858 1.0000 -0.1760 0.0306 0.4685

Income -0.0107 -0.1760 1.0000 -0.2959 -0.4644

logMiles -0.0437 0.0306 -0.2959 1.0000 0.4220

Fuel -0.2594 0.4685 -0.4644 0.4220 1.0000
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Multiple Regression of Fuel Data

Multiple Regression of Fuel Data
Multiple Regression Output

The next slide shows the output from the multiple regression for predicting Fuel from the
4 predictors.
The far right column is the two-sided p-value for the t-statistic for each coefficient of a
model term.
In specifying the model, I use the specialized language used by R for setting up linear
models. Each included term is assumed to have a coefficient, and the 1 explicitly
indicates the intercept. R assumes an intercept is present. If you wish to specify a model
with no intercept, you must include a -1 term.
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Multiple Regression of Fuel Data

Multiple Regression of Fuel Data
Multiple Regression Output

> attach(fuel2001)

> fuel.fit.all <- lm(Fuel~1 + Tax + Dlic + Income + logMiles)

> summary(fuel.fit.all)

Call:

lm(formula = Fuel ~ 1 + Tax + Dlic + Income + logMiles)

Residuals:

Min 1Q Median 3Q Max

-163.145 -33.039 5.895 31.989 183.499

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.1928 194.9062 0.791 0.432938

Tax -4.2280 2.0301 -2.083 0.042873 *

Dlic 0.4719 0.1285 3.672 0.000626 ***

Income -6.1353 2.1936 -2.797 0.007508 **

logMiles 18.5453 6.4722 2.865 0.006259 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 64.89 on 46 degrees of freedom

Multiple R-squared: 0.5105, Adjusted R-squared: 0.4679

F-statistic: 11.99 on 4 and 46 DF, p-value: 9.331e-07
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Multiple Regression of Fuel Data ANOVA for Model Comparison

Multiple Regression of Fuel Data
ANOVA for Model Comparison

ANOVA is a key tool for comparing models.
Define p′ to be the number of terms in the regression model, including the intercept.
As before, SYY is the sum of squared Y deviation scores, and RSS is the sum of squared
residuals. Then

SSreg = SSY − RSS (6)

To assess the overall significance of the prediction equation with 4 predictors, we follow
the table shown below.
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Multiple Regression of Fuel Data ANOVA for Model Comparison

Multiple Regression of Fuel Data
ANOVA for Model Comparison

The overall test for the combined significance of β1, β2, β3, and β4 compares a model
with only an intercept β0 against a model with the intercept and all other terms.

> fuel.fit.intercept.only <- lm(Fuel~1)

> anova(fuel.fit.intercept.only,fuel.fit.all)

Analysis of Variance Table

Model 1: Fuel ~ 1

Model 2: Fuel ~ 1 + Tax + Dlic + Income + logMiles

Res.Df RSS Df Sum of Sq F Pr(>F)

1 50 395694

2 46 193700 4 201994 11.992 9.331e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Multiple Regression of Fuel Data Partial F -Tests: A General Approach

Multiple Regression of Fuel Data
Partial F -Tests: A General Approach

Actually, the F -tests we’ve been discussing so far are a special case of a general procedure
for generating partial F-tests on a nested sequence of models.
Suppose Model A includes Model B as a special case. That is, Model B is a special case
of Model A where some terms have coefficients of zero. Then Model B is nested within
Model A.
If we define SSa to be the sum of squared residuals for Model A, SSb the sum of squared
residuals for Model B, dfa to be n − pa, where pa is the number of terms in Model A
including the intercept, and dfb = n − pb, then to compare Model B against Model A, we
compute the partial F−statistic as follows.

Fdfb−dfa,dfa =
MScomparison

MSres
=

(SSb − SSa)/(pa − pb)

SSa/dfa
(7)
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Multiple Regression of Fuel Data Testing Significance of a Single Term

Multiple Regression of Fuel Data
Testing Significance of a Single Term

R does this model comparison for us using the anova function.
Suppose we wish to test the significance of the Tax term when all the other 3 predictors
are already in the model (along with the intercept).
There are several ways we can do this in R.
A direct way is to specify a second model without the Tax term and compare it to the
model with the Tax term.

> Fuel.Fit.Without.Tax <- lm(Fuel ~ 1 + Dlic + Income + logMiles)

> Fuel.Fit.With.Tax <- lm(Fuel ~ 1 + Dlic + Income + logMiles + Tax)

> anova(Fuel.Fit.Without.Tax,Fuel.Fit.With.Tax)

Analysis of Variance Table

Model 1: Fuel ~ 1 + Dlic + Income + logMiles

Model 2: Fuel ~ 1 + Dlic + Income + logMiles + Tax

Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 211964

2 46 193700 1 18264 4.3373 0.04287 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Multiple Regression of Fuel Data Automatic Sequential Testing of Terms

Multiple Regression of Fuel Data
Automatic Sequential Testing of Single Terms

R will automatically perform a sequence of term-by-term tests on the terms in your
model, in the order they are listed in the model specification.
Just use the anova command on the single full model.
You can prove for yourself (C.P.!) that the order of testing matters. The significance level
for a term depends on the terms entered before it.

> anova(Fuel.Fit.With.Tax)

Analysis of Variance Table

Response: Fuel

Df Sum Sq Mean Sq F value Pr(>F)

Dlic 1 86854 86854 20.6262 4.019e-05 ***

Income 1 59576 59576 14.1481 0.0004765 ***

logMiles 1 37300 37300 8.8581 0.0046399 **

Tax 1 18264 18264 4.3373 0.0428733 *

Residuals 46 193700 4211

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Standard Errors for Coefficients

Standard Errors for Coefficients

In a formula that is virtually identical in form to the simpler one for bivariate regression,
the covariance matrix of the estimated regression coeffients is given by

Var(β̂|X) = σ2(X′X)−1 (8)

The unbiased estimate of σ2 is

σ̂2 =
RSS

n − p′
=

RSS

n − (p + 1)
(9)

Consequently, the typical estimate for Var(β̂|X ) is

V̂ar(β̂|X ) = σ̂2(X′X)−1 (10)
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Standard Errors for Predicted and Fitted Values

Standard Errors for Predicted and Fitted Values
Introduction

You recall from our earlier discussion that there are two distinctly different standard errors
that we can compute in connection with the regression line.
One standard error, sepred, deals with the situation where we have a new set of x values,
and we wish to compute the standard error for the value of ŷ computed from these values.
Another standard error, sefit, deals with the situation where we would like to compute a
set of standard errors for the (population) fitted values on the regression line.
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Standard Errors for Predicted and Fitted Values

Standard Errors for Predicted and Fitted Values
Key Formulas

Suppose we have observed, or will in the future observe, a new case with its own set of
predictors that result in a vector of terms x∗.
We would like to predict the value of the response given x∗.
As in simple regression, the point prediction is ỹ∗ = x∗′β̂, and the standard error of
prediction, sepred(ỹ∗|x∗), is

sepred(ỹ∗|x∗) = σ̂
√

1 + x∗′(X′X)−1x∗ (11)

Similarly, the estimated average of all possible units with a value x for the terms is given
by the estimated mean function at x, Ê (Y |X = x) = ŷ = x′β̂., with standard error given
by

sefit(ŷ |x) = σ̂
√
x′(X′X)−1x (12)
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Standard Errors for Predicted and Fitted Values

Standard Errors for Predicted and Fitted Values
Key Formulas

A given software package may not produce all these estimates.
If a program produces sefit but not sepred, the latter can be computed from the former
from the result

sepred(ỹ∗|x∗) =
√
σ̂2 + sefit(ỹ∗|x∗)2 (13)
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