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Introduction

Introduction

@ In this module, we quickly review some fundamental aspects of the algebra of multiple
regression.
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Introduction

Key Matrix Formulas

@ We already saw in our treatment of the two-sample independent sample t-test how
additional regressors can be tested for signficance using the partial F-test for nested
models, implemented in the R command anova.

@ Now we present the formulas for the model, estimated coefficients, and standard errors.
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Introduction

Key Matrix Formulas
The Model and its Coefficients

@ The multiple regression model can be written

E(Y[X) XB (1)
Var(Y|X) = ¢? (2)

@ As in the simple regression model, the first column of X is a column of 1's, and the first
element of 3 is typically labeled Sy, with subsequent elements labeled 3; ... 3,.

@ Given a set of n criterion (“response”) scores in 'y and an n x p+ 1 set of predictor scores
(including the intercept) in the matrix X, the ordinary least squares estimates of 3 may
be calculated as

B = (XX)"'Xy 3)

@ The predicted scores are calculated as

§=XB8=XXX)"Xy =P,y (4)

@ The residual scores are, of course,

o>

=y-§=(-PJy=Qy (5)
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Multiple Regression of Fuel Data

Introduction

@ Suppose we use Dlic, Income, logMiles, and Tax to predict Fuel.

@ We begin by analyzing the scatterplot matrix.

@ As we can see in the next slide, the potential predictors are only moderatey related to
Fuel.

James H. Steiger (Vanderbilt University) Algebraic Aspects of Multiple Regression 6 /20



N =L otz
Multiple Regression of Fuel Data

Scatterplot Matrix Code

data(fuel2001)

fuel2001$Dlic <- 1000*fuel2001$Drivers/fuel2001$Pop
fuel2001$Fuel <- 1000*fuel2001$FuelC/fuel2001$Pop
fuel2001$Income <- fuel2001$Income/1000
fuel2001$logMiles <- logb(fuel2001$Miles,2)

f <- fuel2001[,c(7,9,3,10,9)]
pairs(f,gap=0.4,cex.labels=1.5)

V V V V V V V
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ssion of Fuel Data

Multiple Regression of Fuel Data

Scatterplot Matrix
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Multiple Regression of Fuel Data

Correlation Matrix

What we see in the scatterplot matrix is reflected in the matrix of intercorrelations.

> round(cor(f),4)

Tax Dlic Income logMiles Fuel
Tax 1.0000 -0.0858 -0.0107 -0.0437 -0.2594
Dlic -0.0858 1.0000 -0.1760 0.0306 0.4685

Income -0.0107 -0.1760 1.0000 -0.2959 -0.4644
logMiles -0.0437 0.0306 -0.2959 1.0000 0.4220
Fuel -0.2594 0.4685 -0.4644 0.4220 1.0000
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Multiple Regression of Fuel Data

Multiple Regression Output

@ The next slide shows the output from the multiple regression for predicting Fuel from the
4 predictors.

@ The far right column is the two-sided p-value for the t-statistic for each coefficient of a
model term.

@ In specifying the model, | use the specialized language used by R for setting up linear
models. Each included term is assumed to have a coefficient, and the 1 explicitly
indicates the intercept. R assumes an intercept is present. If you wish to specify a model
with no intercept, you must include a -1 term.
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Multiple Regression of Fuel Data

Multiple Regression Output

> attach(fuel2001)
> fuel.fit.all <- Im(Fuel™1 + Tax + Dlic + Income + logMiles)
> summary (fuel.fit.all)

Call:
Im(formula = Fuel ~ 1 + Tax + Dlic + Income + logMiles)

Residuals:
Min 1Q  Median 3Q Max
-163.145 -33.039 5.895 31.989 183.499

Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 154.1928 194.9062 0.791 0.432938

Tax -4.2280 2.0301 -2.083 0.042873 *

Dlic 0.4719 0.1285  3.672 0.000626 *x¥x*

Income -6.1353 2.1936 -2.797 0.007508 **

logMiles 18.5453 6.4722  2.865 0.006259 **

Signif. codes: 0 'skx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 64.89 on 46 degrees of freedom
Multiple R-squared: 0.5105, Adjusted R-squared: 0.4679
F-statistic: 11.99 on 4 and 46 DF, p-value: 9.331e-07
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Multiple Regression of Fuel Data ANOVA for Model Comparison

Multiple Regression of Fuel Data
ANOVA for Model Comparison

o ANOVA is a key tool for comparing models.
@ Define p’ to be the number of terms in the regression model, including the intercept.
@ As before, SYY is the sum of squared Y deviation scores, and RSS is the sum of squared

residuals. Then
SSreg = SSY — RSS (6)

To assess the overall significance of the prediction equation with 4 predictors, we follow
the table shown below.

Source df SS MS F p-value
Regression P SSreg  MSreg = SSreg/p ~ MSreg/c>

Residual n—p  RSS 6%2=RSS/(n-7p)

Total n—1 SYY
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Multiple Regression of Fuel Data ANOVA for Model Comparison

Multiple Regression of Fuel Data
ANOVA for Model Comparison

@ The overall test for the combined significance of (31, 2, B3, and B4 compares a model
with only an intercept 5y against a model with the intercept and all other terms.

> fuel.fit.intercept.only <- 1lm(Fuel™1)
> anova(fuel.fit.intercept.only,fuel.fit.all)
Analysis of Variance Table

Model 1: Fuel ~ 1
Model 2: Fuel © 1 + Tax + Dlic + Income + logMiles

Res.Df RSS Df Sum of Sq F Pr(>F)
1 50 395694
2 46 193700 4 201994 11.992 9.331e-07 *x**
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Multiple Regression of Fuel Data Partial F-Tests: A General Approach

Multiple Regression of Fuel Data
Partial F-Tests: A General Approach

@ Actually, the F-tests we've been discussing so far are a special case of a general procedure
for generating partial F-tests on a nested sequence of models.

@ Suppose Model A includes Model B as a special case. That is, Model B is a special case
of Model A where some terms have coefficients of zero. Then Model B is nested within
Model A.

o If we define SS, to be the sum of squared residuals for Model A, SS;, the sum of squared
residuals for Model B, df, to be n — p,, where p, is the number of terms in Model A
including the intercept, and df, = n — pp, then to compare Model B against Model A, we
compute the partial F—statistic as follows.

E _ Mscomparison . (Ssb - 553)/(Pa - pb) 7
dfy,—dfs,dfy — MS, o - SSa/dfa ( )
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Multiple Regression of Fuel Data

Testing Significance of a Single Term

@ R does this model comparison for us using the anova function.

@ Suppose we wish to test the significance of the Tax term when all the other 3 predictors
are already in the model (along with the intercept).

@ There are several ways we can do this in R.

o A direct way is to specify a second model without the Tax term and compare it to the
model with the Tax term.

> Fuel.Fit.Without.Tax <- 1m(Fuel ~ 1 + Dlic + Income + logMiles)
> Fuel.Fit.With.Tax <- 1lm(Fuel ~ 1 + Dlic + Income + logMiles + Tax)
> anova(Fuel.Fit.Without.Tax,Fuel.Fit.With.Tax)

Analysis of Variance Table

Model 1: Fuel ~ 1 + Dlic + Income + logMiles
Model 2: Fuel ~ 1 + Dlic + Income + logMiles + Tax

Res.Df RSS Df Sum of Sq F Pr(oF)
1 47 211964
2 46 193700 1 18264 4.3373 0.04287 *
Signif. codes: O 's**' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Multiple Regression of Fuel Data

Automatic Sequential Testing of Single Terms

@ R will automatically perform a sequence of term-by-term tests on the terms in your
model, in the order they are listed in the model specification.

@ Just use the anova command on the single full model.

@ You can prove for yourself (C.P.!) that the order of testing matters. The significance level
for a term depends on the terms entered before it.

> anova(Fuel.Fit.With.Tax)

Analysis of Variance Table

Response: Fuel
Df Sum Sq Mean Sq F value Pr(>F)

Dlic 1 86854 86854 20.6262 4.019e-05 **x
Income 1 59576 59576 14.1481 0.0004765 **x
logMiles 1 37300 37300 8.8581 0.0046399 *x*
Tax 1 18264 18264 4.3373 0.0428733 *

Residuals 46 193700 4211

Signif. codes: O '#*x*' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Standard Errors for Coefficients

Standard Errors for Coefficients

@ In a formula that is virtually identical in form to the simpler one for bivariate regression,

the covariance matrix of the estimated regression coeffients is given by

Var(B|X) = o?(X'X) !

@ The unbiased estimate of o2 is

», _ RSS RSS
o2 -

n—p n—(p+1)

o Consequently, the typical estimate for Var(3|X) is
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Standard Errors for Predicted and Fitted Values

Introduction

@ You recall from our earlier discussion that there are two distinctly different standard errors
that we can compute in connection with the regression line.

@ One standard error, sepred, deals with the situation where we have a new set of x values,
and we wish to compute the standard error for the value of ¥ computed from these values.

@ Another standard error, sefit, deals with the situation where we would like to compute a
set of standard errors for the (population) fitted values on the regression line.
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Standard Errors for Predicted and Fitted Values

Key Formulas

@ Suppose we have observed, or will in the future observe, a new case with its own set of
predictors that result in a vector of terms x*.

@ We would like to predict the value of the response given x*.

@ As in simple regression, the point prediction is y* = x*’B, and the standard error of
prediction, sepred(y*|x*), is

sepred(y*|x*) = 6\/1 + x*(X'X)~1x* (11)

@ Similarly, the estimated average of all possible units with a value x for the terms is given
by the estimated mean function at x, E(Y|X = x) = § = x'3., with standard error given

by
sefit(7|x) = 64/x/(X'X)~1x (12)
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Standard Errors for Predicted and Fitted Values

Key Formulas

@ A given software package may not produce all these estimates.
o If a program produces sefit but not sepred, the latter can be computed from the former
from the result

sepred (7 [x*) = /62 + sefit(5*x")2 (13)
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